If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+6n-340=0
a = 2; b = 6; c = -340;
Δ = b2-4ac
Δ = 62-4·2·(-340)
Δ = 2756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2756}=\sqrt{4*689}=\sqrt{4}*\sqrt{689}=2\sqrt{689}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{689}}{2*2}=\frac{-6-2\sqrt{689}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{689}}{2*2}=\frac{-6+2\sqrt{689}}{4} $
| 2(2n+5)=9(8n+6)+1 | | y=2(1/2)+9 | | -12+6=3x-6 | | -3x+5x=9+5x | | -5+6x=-x+9 | | -2-13.8=8x-(6x | | 60+2y=120 | | -4(x+5=-4x-20 | | 107+x=100 | | 4.43x10^-11=(1x10^-8)^x | | 4x-2x+9=8 | | 3x+2.3x+2+81=0 | | 3x-1=2×+7 | | -10y-9=11 | | 3x-47=115 | | 2(2x+4)=-5(3x-2) | | 7x-8x=-6 | | X.X-6x+5=0 | | -2(4s-1)-2=-2(8s+9)-2 | | x=10x100/20 | | 0=1/2x^2+(1/2) | | 0=1/2x^2+1/2 | | 8(1-6x)=-8x-32 | | 8x-21=7x-21 | | -8(x+4)=2(1-4x)-9 | | 3r-6r=33 | | 0=4x^2-59x-131 | | 5(2k+2)=5(3k+7) | | 4f−13=33 | | 8.x-15=5.x+6 | | 6x4(x+12)=148 | | -19=8c-5c |